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Variational methods for generating meshes are developed for arbitrary surfaces in three 
dimensions. Several variational principles are written down for surfaces, the corresponding 
elliptic equations are listed, and several simple examples are given. In addition, a short dis- 
cussion of planar methods and relative scaling of integrals are included in this paper for com- 
pleteness. 7 1986 Academic Press. Inc 

In previous papers variational methods for generating adaptive grids have been 
discussed. In particular, the paper by Brackbill and Saltzman [ 1 ] took the notion 
of a variational formulation and showed how to use it to generate adaptive meshes 
in two-dimensional Cartesian geometry. Further work on variational formulations 
is presented by Saltzman [2]. The latter extended the ideas in [ 1 ] by generalizing 
them to other geometries and higher dimensions. One particular generalization was 
to formulate the three-dimensional integrals and associated Euler equations. The 
approach was straightforward and assumed the boundaries and the corresponding 
point distributions on the boundaries were given. In this paper it will be shown how 
to generate adaptive meshes on arbitrary surfaces in three dimensions to com- 
plement the work that has gone before. It is also the purpose of this paper to show 
how variational integrals can be simply and elegantly formulated, even though the 
geometries may be complex and mesh constraints complicated. 

The paper will start with a review of two-dimensional Cartesian mesh generation 
using variational integrals to introduce the critical ideas used in the method. These 
ideas are then generalized to surfaces in three dimensions in the second section. The 
third section will show details of the implementation of the method. Careful atten- 
tion will be paid to scaling, a subject often ignored in mesh generation methods as a 
whole. The fourth and last section of this paper will exhibit test problems and make 
some remarks about the problems and the method itself. 

0021-9991186 $3.00 
CopyrIght ‘r” 1986 by Academic Press. Inc. 

Ail rights of reproductmn in any form reserved. 



2 JEFFREY SALTZMAN 

CARTESIAN INTEGRALS REVISITED 

We begin with the concept of a mapping from a logical space to a physical space. 
The idea of mapping from one space to another is not so abstract as the ter- 
minology implies. When storing a two-dimensional mesh using FORTRAN, two- 
dimensional arrays are used. X(Z, J) and Y(Z, J) would describe a mesh, but also 
hints of a mapping from a rectangle of integers IMIN < I< IMAX and JMIN <- 
J< JMAX to some collection of points in (X, Y). By using a simple interpolation 
scheme the mapping can be “filled in” between the integers to get a smooth map- 
ping. Once the mesh has been “filled in” it is possible to measure various qualities 
of the mesh using integrals. To differentiate the continuous mappings from the dis- 
crete mappings, 5 and YI will be used in place of I and J and x and r will be used 
instead of X and Y. The following integrals measure the smoothness, orthogonality, 
and volume weighting of a mesh in two-dimensional Cartesian coordinates: 

I,, = 
i 

(Vt)’ + (Vn)’ dx dJ (1) 

I, = s (V( . Vq)’ J3 d.x dy (2) 

Z[;=j w-(x, y)Jdxdy (3) 

where 

The first integral (Eq. 1) measures the smoothness of the computation mesh by 
integrating the squares of the gradients of the lines in each coordinate direction. By 
evenly spacing the lines one naively would conclude that the integral could be 
minimized. This naive conclusion can be rigorously verified as the minimization of 
this integral leads to the study of the Dirichlet integral [3]. The second integral 
(Eq. 2) measures the orthogonality of the coordinate lines. One sees that an 
orthogonal mesh makes the integral zero, attaining a minimum. The orthogonality 
measure is blind to a mesh that is folded over on itself. This property implies a non- 
unique minimum. The third integral (Eq. 3) measures the Jacobian of the mesh 
against a weight function w(x, v). The naive point of view again is correct in con- 
cluding that wherever the weight function is large, the Jacobian and the 
corresponding line spacing is small. In [ 11, the nonuniqueness of the minimum of 
this integral is discussed. 

By taking a linear combination of the integral measures, one can control several 
features of the mapping simultaneously. In the following equation 

(4) 
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the coefficient of the smoothness integral is set to unity while the coefficients of the 
other two integrals are ratios of two numbers. The numerators of the ratios are 
chosen to be of order unity while the denominators of the ratios are chosen in a 
manner to scale the second and third integrals to the size of the first. 

A simple yet effective way of calculating the denominators of the coefficients in 
(4) is to do dimensional analysis. In carrying out a dimensional analysis let I denote 
length in (x, y) and 7 denote length in (5, r]). Further let M; denote some average 
value of the weight function. By some simple algebra equations (5) (6) and (7) 
express the dimensions of the given integrands. 

Is- (7/O’ (5) 

I,- W712 (6) 

I,. - W(l/7j2. (7) 

Finally the denominators & and 1.: in Eq. (4) can be easily calculated: 

In practical applications crude integral approximations to the average value of the 
weight function suffice. For the scale lengths 1 and 7 the square root of the 
corresponding areas are adequate. Again a crude quadrature scheme is used to find 
areas. 

With the integrals established, one can turn to mesh generation. To generate a 
mesh, the linear combination of the integrals are minimized by solving the 
associated Euler equations. Let 

F=(V5)2+(Vq)2+& (VqVq)‘J’+$ WJ 
3,; L1 

be the integrand of the linear combination of integrals. Then 

(9) 

(11) 

is the corresponding set of Euler equations. In practice, the dependent and indepen- 
dent variables of the integrals are interchanged and the Euler equations are written 
using the interchanged variables. These equations are differenced using centered dif- 
ference schemes and solved by a relaxation technique. Details of the process can be 
found in [ 11. Although nonuniqueness of solutions minimizing Eqs. (2)-( 3) seem 
an impediment to do numerical work, coupling the integrals with equation (1) 
works well. It can be hypothesized that the success of the coupling follows from Z, 
picking the smoothest solution among the nonunique solutions of either I, or I,. 
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VARIATIONAL INTEGRALS FOR SURFACES 

Instead of generating meshes on planar surfaces, it is sometimes desirable to 
generate meshes on a given surface. With the framework from the previous section 
it is easy to generate the proper integrals for general surfaces. First, introduce a 
parameterization for a surface using the parameters s, and s2 : 

x=x(s,,s2) (12) 

I’= Yb,, .Q) (13) 

ZZZ (3,) $1. (14) 

Suppose that si and s2 make up an orthogonal parameterization of the given sur- 
face and further suppose that s, and s2 are normalized so they each measure arc 
length along the surface. Along with this parameterization let 

SI =x,(5, ?I (15) 

s2 =s,(ir, q). (16) 

Here 5 and q again serve the purpose of being the “filled in” array indices as in the 
previous section. If we had a parameterization like this, the variational integrals 
could be written down as 

I, = j (Vo2 + (Vq)’ ds, ds, (17) 

It,=!” wJds, ds, (19) 

where 

J=“( $19 s2) 

w, fd v=Y,,s2. 

The form is exactly the same as the Cartesian case. Unfortunately in practical 
applications few surfaces are described with orthogonal arc length coordinates. 
Usually surfaces are interpolated from discrete data. In such cases, the most one 
can hope for is the following parameterization: 

x=x(r1,t2) (20) 

Y= AtI? t*) (21) 

z=z(t,, f2). (22) 
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FIG. 1. The geometry of the local transformation creates an orhtogonal projection relative to the 
tangent dr,. 

Here we assume only that t, and t, parameterizes the surface in some smooth and 
nonsingular fashion. We can, however, introduce the followng local transformation: 

= 
ds, 0 JZ sin 8 

at, 

where 

a; a; -...-...- 

J= 6% Y, z), cose- at, at, 
ai ai ’ 

I II 
-- 
at, at, I 

The normalized tangent vector relations are 

(23) 

ai ai 
sin 6 = at, x at, 

I 
ai ai -- 

II I at, at, 

ds; dr’, ds; (dr;xdr;)xdr; -=- 
Idi, Idr;l -= Id& I(dr’, xdr;)xdi,I’ (24) 

This transformation introduces a local set of orthogonal arc length coordinates. To 
clarify this transformation, examine Fig. 1. 

With these coordinates and using the chain rule the following variational 
integrals can be derived. 
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I,={w(t,, t2) 
ah s2) ah, t2) 2 
-___ 
ah t2) act, V) 

dt: 4. 

as2 
dt, 

at, 2 - 
at > 

(251 

(26) 

(271 

It is implicitly assumed that t, and t2 are dependent upon < and q. 
As in the Cartesian case, in formulating a mesh generator we next scale the 

integrals. From the form of the integrals it is apparent that the scaling factors are 
the same as the Cartesian case. That is, if we again use 1 as scale length on the sur- 
face, ras the scale length in 5 and q coordinates and W as the average value of w, 
with the linear combination of integrals written as 

1=1.1.,+;1.>+;1, (28) 
0 L1 

the scaling parameters are 

1; = (l/T)” E,:. = W( f/7)4. (291 

With the combined variational integral written down, the Euler equations can be 
found using the following differential operators: 

(30) 

(31) 

The differential equations have the form 

= -d a2s1 a2s1 d -- d 

a3, a3, 
--e --R, - etlt2 at, at, f2f2 at: 

(32) 
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-- (33) 

The coefficients are broken up according to which integral they belong to and are 
given in the Appendix. Again, since the independent variables are just array indices, 
the equations can be discretetized using centered differences. The difference 
equations are then solved using a relaxation scheme. 

IMPLEMENTATION 

In constructing FORTRAN coding for a surface mesh generator a major con- 
sideration of the author was to make use of an older code used for planar meshes. 
This was rather easy to do since the structure of the equations is the same as the 
planar case. In fact the only addition is a description of the surface and the 
calculation of the derivatives of the arc lengths. Of course there are many more 
first-order terms stemming from the surface geometry. It seems at first that the coef- 
ficients of (32)-(33) are very complex. However, many terms are repeated and need 
be calculated only once. Taking advantage of the great repetition in the terms leads 
to a great simplification in coding. 

The chosen representation of the surface for the test cases given in the following 
chapter is the tensor product of B-splines. B-splines were chosen for their ease of 

FIG. 2. The set of spline basis functions of order 4 (cubic splines) with knot points at integer points 
on the interval [O, 71. 
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use and smoothness. They are adequate for the static examples presented here, but 
when speed becomes an issue other surface representations should be used. B- 
splines are sums of basis functions which are themselves comprised of piecewise 
polynomials. In fact they approximate functions the same way that piecewise 
polynomials do since they are nothing more than a different basis for the piecewise 
polynomials. Figure 2 displays graphs of the basis functions on a finite interval. 
Notice that the basis functions are nonzero only over a certain interval. In this 
example the de Boor spline package was used [4, 51 to generate the graphs with an 
order of 4 (cubic splines). The spline function as a whole can be written down as 

f(t) = c mi(t) (34) 

where /Vi(t) is the ith basis function and the a;s are coefficients determined from the 
approximation problem. For fourth-order splines the function is interpolated at the 
knot points. Additional conditions are required at the end points of the interval, 
where we require second derivatives set to zero. A tensor product of the spline 
functions is then constructed by changing the variable of the spline function and 
multiplying it with the original spline. The result is in the following equation: 

fttl 9 l7.1 =C a,jNi(tl) Nj(t2). (35) 
i,. 

If there are m knots in one direction and n knots in the other then there are 
mn + 2(m + n) + 4 interpolatory conditions on the tensor product. These conditions 
are met in the following manner. There are mn points to interpolate. As in the one- 
dimensional case, 2(m +n) points can be constrained to have their second 
derivatives set to zero. The last four constraints are taken care of by setting the 
cross derivatives at the corners. The following equations summarize these con- 
ditions: 

f(t lk' f2,) =c qwl,) Ni(f2,) 1 <kdm, 1 <I<n, (36) 
q 

when 

or 
ci= 1, ldf<nwhenk=l,m 

ci = 2, l<k<mwhenl=l,n, (37) 

o= &fhkJ2,1=Dij& tNittl,) Nj(t2,)) 
1 2 iJ 1 2 
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for 

(k,I)=(l or m, 1 or n). (38) 

These equations describe a system of linear equations with a banded structure. 
The band structure comes from the finite extent of the basis functions. With the 
above construction, a fairly general surface may be interpolated by using three ten- 
sor spline products. The economy in this formulation is that only one LU decom- 
position is done since the coefficients for each coordinate can be found using the 
same factors. Although the order of the splines are sufficient for calculating all the 
necessary coefficients in the Euler equations, it is more efficient to difference terms 
whenever possible. In this implementation, the terms that require first derivatives of 
the spline function are calculated analytically while higher terms are differenced. 

EXAMPLES 

Two examples are presented to show that the equations can be succesfully dif- 
ferenced and solved. The first example is a sinusoidal surface with the following 
parameterization: 

x= t, (39) 

y=t2 (40) 

z = (tl + t2)/2 + sin(n(t, + t,)) (41) 

for Odt,<l, O<t,<l. 
With the above equations the spline surface is calculated on some set of knots. 

The initial mesh is uniform in t, and t2 using integer values. Then the mesh points 
are perturbed by random numbers whose magnitude is less than a quarter. It is 
important to remember that even though the points are randomized they still are 
on the tensor spline surface. Figure 3 displays the randomized surface. Using the 
difference equations associated only with the smoothness integral, a new mesh is 
calculated and shown in Fig. 4. As expected, the mesh is uniform. 

The second example is a cylinder with the following parameterization: 

x = (1 + cos(7ct,))/2 (42) 
y = (1 + sin(7rt,))/2 (43) 
z = t, (44) 

forO<t,<l, Ogt,<l. 
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FIG. 3. The surface described by Eqs. (108)-( 110) with random perturbations imposed to yield a 
nonuniform mesh. 

FIG. 4. The surface described by Eqs. (lOSk( 110) after 20 iterations using just I, as the variational 
principle. 
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FIG. 5. The surface described by Eqs. (111) (113) is half of a right circular cylinder. 

11 

FIG. 6. The surface described by Eqs. (111 t( 113) after 20 iterations using a combination of I, and I, 
as the variational principle. 
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The cylinder is first fitted by three spline functions as in the first example. Next 
an initial mesh is generated as in Fig. 5. A weight function is now introduced with 
the following form. 

w(t,, [*)’ 50e-‘L4(‘-3/14)P Y = J(t, - l/2)2 + (12 - l/2)2. 

The effect of this weight function is to bunch the mesh on a circle bent onto the 
cylinder. The effect of this weight function can be seen in Fig. 6. The whole cylinder 
seems to be deformed, yet all the points remain on the surface. The illusion is 
caused by the nonuniform mesh itself. The best way to describe a cylinder is to use 
a uniform mesh. Instead we insist on placing points around a circular region. The 
last step in this example is to set the coefficients of the equations associated with the 
orthogonality integral to a nonzero value. Figure 7 displays the effect of the 
orthogonality integral on the weight function. Note the greater effect of 
orthogonality on larger zones than in smaller zones. This is caused by the J’ term 
in the integral. In theory one could further increase the value of the orthogonality 
integral coefficients until the mesh is again uniform, but it has been found that there 
is an upper limit on both the weighting and orthogonality coefficients. Beyond these 
limits, the solution of the Euler equations by relaxation does not converge. These 
limits also depend on the number of mesh points in the problem. As the number of 
mesh points increase, the limits become larger. 

FIG. 7. The surface described by Eqs. (111 t( 113) after 20 iterations using a combination of I,, I,,, 
and 1, as the variational principle. Mesh lines can be made more orthogonal without degrading the effect 
of I,.. 
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Finally, a few comments should be made about the performance of the current 
scheme. As stated earlier, the major problem with the current scheme is the 
representation of the surface. The B-spline representation is slow compared with 
other parts of the coding. The spline representation is adequate for generating 
meshes that are afterwards fixed, but is probably too slow for changing the mesh 
every cycle of a hydrodynamics problem. Other ways to represent the surface 
should be found for time dependent problems. 

CONCLUSION 

The results show there are ways to generate meshes on a large variety of surfaces 
using variational principles. It is also the hope of the author that the reader is 
convinced that it is conceptually simpler to construct mesh generation schemes 
by using variational integrals rather than by constructing the elliptic equations 
directly. 

APPENDIX 

The coefficients of Eqs. (32))(33) are given below and are grouped with the 
corresponding variational integral. Letting 

J= J,,J, 

the terms from I, are 

b,,= -4J,y 
( 

!%%+d’l!!? as, as, as2 as, 

at at aq aq I( 
--+-- (J2J,) 
at af7 at h )I 

b,,,,=2J,(~$+$+)(f$+$$)/(J’J,) 

(A.21 

(A31 

(A41 

(As) 

(A61 
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(A71 

(A8) 

(A91 

(A101 

(A131 

(A161 

(A171 

(A181 

(A191 

(A20) 

(A21) 

R, =0 

R2=0. 

(A=) 

6423) 
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The terms from I, are 

arc = -2wc !!fT 
av 

a 51 = 4w J-f at, at, 
at 87 

a 
at,2 

rl? = -2wJ; z 

b,, = 2wJf dt, dt, 
a? aq 

e 4 12 
= _&wJJ' 

at, s 1 

e 
1212 =o 

ft,,, =o 

f,,,, = -2 2 wJrJf 
2 

15 

b424) 

(A-25) 

(A261 

(A271 

(A281 

(A30) 

6432) 

(A33) 

(A341 

(A351 

(A361 

(A371 

(A381 

(A39) 

6440) 

581/63/l-2 
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g 12 12 
= -2$wJ,J; 

I 

R =-J’?!! 
1 

at, 

R 
2 

= -J22 
at; 

The terms from I, are 

CA41) 

b442) 

(A431 

(A441 

(A45) 

(A46) 

(A471 

(A481 

(A491 

(A50) 

(A51) 

(A521 

(A531 



GENERATING MESHES ON SURFACES 17 

( a~, as, as, as, as, as, as, as, QvZ-4 --+-- 
)C 

--+-- 
at, as at, a~ at, ag at, ag 1 

-4(!d+!3(32+~3 

2 

Gl 

= -2 

( 
asI as, I as2 as2 
at, ag at, ai: 1 

4,,,= -2 ( as, as, as, as, 
zjy+zjy I( 

2 as, at, at, I as, at, I as, at1 
at, a< aq at all a? x 1 

-2 as, as, 
( 

as2 as, -- -- 
ai? at, )( 

as, at,2 I as, at, at, 
+ atj at, afj ay at at aq ) 

-2 as, as, 
( 

as,as, -- -- 
at at, + al at, )C 

as, at, at, I as, at,2 
aq at aq at all 1 

(A541 

(A551 

(A561 

2 as, as, as2as2 e ,, f, = - ( 
-- -- 
at all + at all >( 

2 as2 at, at, I as,at, I as2atl 
at, at all x all af7 at > 

-2 Tw$+!sJ2)(W+?g!5$) 
( 1 

-2 as, as, I as2as2 
( 

as2 at, at, +as, at,2 -- 
ag at, aq at, >( 

--- -- 
all at all at au > (A59) 
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e t,t*= - 2 
( 

I as, at, I as2 at, as, as, I as, as, 
at alt at aq I( ( 

2as, at, at, I at, at, 
at, at aq all a< ) aq at x aq ) 

-2 as, as, I as, as, 
( 

2 as2 at, at, I as2 at, at2 I at, at2 
all at, afj at, )C ( all at at at at all au at )) 

-2 
( 
as, as, as2 as, as, at, at, at, at, 
--+Frt, at at, )C ( 

--+-- +@5dt, 
all at all all at ) at as as 1 (A601 

2 as, a-5 e **t* = - 
( 

-..--+!$$)(2g~$) 

-2 !@.2+1-l 
( 

as as 
)C 

as, at,2 as, at, at, 
a? at, afj at, aq ag --+iirzi!q ) 

-2 y!$+e2 
( , at at, I( 

as, at, at, as, at,2 ---+-- 
all at as x aq ) 

-2 a-5 as, I as,as, 
( 

as, a42 t as, at, at, 
>( aq at, a? at, atj ag at at aq > 

-2 fi ;;, f as2 as2 
( 

as, at, at, I as, ah2 
)( 2 at at, all at all at aq 1 

(A61 1 

(A62) 

-2 as, as, I as2 as, 2 as, at, at, I as, at, at, f at, at2 
( all at, aq at, I( ( as a5 at at at aq aq at )) 

-2 “d”; ;;, I as2 as2 
( 2 at at, >( ( 

2 yjfi ;; I ;; ;; + 2 as, at, at2 
> x aq all > (A631 

f*,,,= -2 
( 
!!2!%+!?!2~ 
at all at all >( 

2 as, at2 at2 I as, at2 I asI at, 
at, at as all at at all > 

-2 as, as, ~ as2 as, asI at22 I a.5 at2 at, 
( all at, al7 at, )C all ag a( at all ) 

( 
as, as, as, as2 as, at, at, as, at22 

-2 qar,+arar, >( zy~zy+r2y > (A64) 
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g 11[I = -2 
( 
as,asl 2 as2 at, at2 ( as, at2 I as2 at, I as, as2 
x all at a4 )( at, at a? all x at all ) 

-2 w!fi+~~)($g+~$~) 
( 

-2 as, as, I as2 as2 
( 

as2 at2 at2 I as2 at,* 
)C a< at, a< at, atj ag av al as ) 

g 1112 =-2 s,s,+s,s, 
( at aq at af7 I( ( 

22 !f!p+w!& +95+w.& 
) ) 

-2 as,as, 
( 

2 as2 at, at2 I as, at, at, I at, at2 I as, as2 
)C av at, all at, ( all air at at at all all at )J 

(A65) 

-2 
( 
&as, as2 as, as, at, at, 
ag ;S;;+zdt, )( ( 

I at, at2 + 2 as2 at, at, 
Z at aq all at 1 at aq all 1 (‘466) 

g 12 12 
= -2 as, as, I as, as2 

( 
2 as2 at, at2 I 8.7, at2 I as2 at2 

at ag at af7 )( at2 at afj aq at ag all ! 
-2 as, as, f as, as2 

( 
as2 at,* I ;; fi ;; 

>( aij at, al? at2 all at > 

(A67) 

R,=Q (A681 

R,=O. (‘469) 
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